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Abstract--In Part I of this paper a stress jump condition was developed based on the non-local form of 
the volume averaged Stokes' equations. The excess stress terms that appeared in the jump condition were 
represented in a manner that led to a tangential stress boundary condition containing a single adjustable 
coefficient of order one. In this paper we compare the theory with the experimental studies of Beavers and 
Joseph [J. Fluid Mech. 30, 197-207 (1967)], and we explore the use of a variable porosity model as a 
substitute fer the jump condition. The latter approach does not lead to a successful representation of all 
the experimental data, but it does provide some insight into the complexities of the boundary region 

between a porous medium and a homogeneous fluid. 

1. INTRODUCTION 

The analysis presented in Par t  1 of  this paper  dealt  
wi th  the general p rob lem of  m o m e n t u m  transfer  at  
the bounda ry  between a porous  med ium and  a homo-  
geneous fluid. We have i l lustrated such a bounda ry  in 
Fig. 1 where the porous  med ium is represented by the 
~o-region and  the homogeneous  fluid by the q-region. 
W h e n  inert ial  effects are negligible the governing 
differential equat ions  and  bounda ry  condi t ions  can  be 
expressed as 

V" (v~)~ = 0 in theq-region  (1) 

0 = - V(p~)~ + p~ g + #~V 2 (v~) ,  in the q-region 

B.C. 1 (vp)~ = ( v a ) ,  a t  the og-q bounda ry  

B.C. 2. n~," [-I( , (p#>~-(,p~>,P)+/tp(e~,]V(v~>o 

-V(v~>.)] 

= - /z~6D"  [K~-2 • <v~),o] 

+ ~ 6 - '  A. (ep~ - 1): (~;2 (vp)~ + <vp ).) 
at  the e)-q bounda ry  

-/l~Kh-~ ' ( v a ) ~  intheog-region 

tAuthor  to whom correspondence should be addressed. 

V ' ( v a ) ~  = 0 in the eg-region. (6) 

In our  analysis of  the stress j ump  condi t ion,  we en- 
countered  an  excess surface stress, an excess bulk 
stress and an  excess Brinkman stress. The excess sur- 
face stress does not  appear  explicitly in equa t ion  (4) 
because it has the same form as the term on the left 
hand  side, while the excess bulk  stress and  the excess 
B r i n k m a n  stress are represented by the first and  
second terms respectively on  the r ight  h a n d  side. On 

?]-region 

(2) !1(°11 

(3) 

(4) 

(5) 

Fig. 1. Boundary between a porous medium and a homo- 
geneous fluid. 

2647 



2648 J.A. OCHOA-TAPIA and S. WHITAKER 

D 

g 
h 
H 
I 
i,j 

K~ 
X~ 

Ee 

no;t/ 

@ S  
<vex 

<v.> 
<v~>. 

<v~>t/ 

NOMENCLATURE 

diameter of the averaging volume 
having the form of a disk [m] 
gravity vector [m s -2] 
depth of fluid channel [m] 
depth of porous medium [m] 
unit tensor 
unit base vectors in the x- and y- 
direction, respectively 
Darcy's law permeability tensor [mq 
norm of the Darcy's law permeability 
tensor in the interfacial region [m 2] 
Darcy's law permeability tensor in the 
homogeneous co-region [m 2] 
norm of the Darcy's law permeability 
tensor in the ~o-region [m 2] 
characteristic length associated with 
the fl-phase in the co-region [m] 
unit normal vector directed from the 
co-region toward the q-region 
intrinsic average pressure [N m -2] 
intrinsic average pressure in the co- 
region [N m 2] 
intrinsic average pressure in the t/- 
region IN m -2] 
superficial average velocity [m s-~] 
superficial average velocity in the ~o- 
region [m s l] 
superficial average velocity in the q- 
region [m s l] 

x, y rectangular coordinates [m]. 

Greek symbols 
the adjustable coefficient in the 
Beavers and Joseph jump condition 

fl the adjustable coefficient in the 
representation for the excess stress 

A thickness of a disk that represents an 
averaging volume [m] 

6 thickness of the interfacial region [m] 
e~ porosity or volume fraction of the fl- 

phase 
e~  porosity in the homogeneous portion 

of the co-region 
/re viscosity of the fl-phase [N s m -2] 
pe density of the fl-phase [kg m-3]. 

Subscripts 
fl identifies a quantity associated with 

the fl-phase 
t/ identifies a quantity associated with 

the t/-region 
o9 identifies a quantity associated with 

the co-region 
cot/ identifies a quantity associated with 

the a~--t/boundary. 

Superscripts 
fl identifies an intrinsic volume average. 

the basis of equation (3) we can express the stress 
jump condition in the compact notation represented 
by 

B.C. 3' 

no,," [ -  I(@~>~ - @~>~) + ~p(~;2 V<ve >, - V<ve >,)1 

= peM.(va)o, at the og-~/ boundary. (7) 

If  the thickness of the boundary region can be scaled 
according to 6 = Ox/(Kp,o ), we see from equations (4) 
and (7) that the tensor M will depend on both Ke~ 
and eel. For  the one-dimensional flow process illus- 
trated in Fig. 2, we require only the x-component of 
equations (1)-(7), along with the boundary conditions 
at y = h and y = - H. If  the Brinkman correction is 
negligible at y = - H ,  the boundary value problem 
describing the flow illustrated in Fig. 2 can be 
expressed as 

B.C1 <va), = 0, y = h no slip condition (8) 

~x 

0 ~< y ~< h Stokes' equations (9) 

B.C. 2 
( v a ) ,  = ( v e ) ,  ~ y = 0 continuityofvelocity (10) 

B.C. 3 
1 ~<vp>. ~<v~>~ fl V 

- -  - -  / . 7 . . <  ~>-, y = 0  

stress jump condition (11) 

0 ~@e>~ 
Ox 

+ 
8p,o ~y2 

Y~ 
K~. (v;s>o~, - - ~ < y < O  

Darcy's law with the first Brinkman correction (12) 

B.C. 4 (va)o, is bounded as y ~ - oo. (13) 

Here we have used (va)~ and (va).  to represent the 
x-components of the two volume average velocity vec- 
tors, and the dimensionless coefficient fl is given by 
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Fig. 2. Flow of a homogeneous fluid parallel to a porous medium. 

fl = ~/(ga,,) [6- ; i-  A" i(ep,, - 1)2 (e~-~ + 1) 

-~i" D" K~-~-i]. (14) 
We expect the dimensionless coefficient fl to be on the 
order of one, and because of the nature of excess 
functions we can expect that fl may be either positive 
or negative. It is of some importance to note that the 
coefficient fl depends on the parameter ~/(K~)/6 and 
on the inverse of this parameter, 6/x/(Ka~), and we 
express this idea as 

In the next section we will compare solutions of equa- 
tions (8)-(13) with the experimental data of Beavers 
and Joseph [1]. 

2. COMPARISON WITH EXPERIMENT 

In solving equations (8)-(13) we can make use of 
the fact that the pressure gradients are constant  and 
equal to each other 

dx dx = constant  (16) 

so that the dimensionless form of our boundary  value 
problem is given by 

B.C. 1 U , = 0  a t Y = a  (17) 

d 2 U " -  1, 0~< Y~<a (18) 
d y  2 

U , =  U~, Y = 0  (19) B.C. 2 
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1 dU~o dU n flU~ at Y-- 0 (20) B.C. 3 - -  - 
~t~,o dY dY 

1 d2U'° - U~ = - 1, - ~ < Y ~ < 0  (21) 
~ d yz 

B.C. 4 U~--*I a t Y ~ - ~ .  (22) 

Here we have made use of the following dimensionless 
variables 

Y Y = - -  (23) 

U o -  (va),o (24) 
(vD~ 

<va>. 
U. (va)~ (25) 

In terms of these variables, and the three parameters 
a, fl and ~a~, the solutions for the two velocities can 
be expressed as 

U. = l a 2 [ 1 - ( Y / a ) 2 l - C , a [ 1 - ( r / a ) ] .  0 <~ Y <~ t7 

(26) 

U,o=C2exp(x/(eao)  Y ) + l ,  - o o  ~< Y~<0. (27) 

Here we have followed the nomenclature of Beavers 
and Joseph [1] and used a to represent the dimen- 
sionless channel depth. 

a = h/~/(Kao3. (28) 

The two constants of integration in the expressions 
for the velocity are given by 

la2 (1 -- fi~/(e/~)) -- 1 
C1 = (29) 

c~ - ( C  + ~ ) ~ / ( ~ )  (30) 
1 - / ~ 4 % ~ )  

When fl is set equal to zero, equations (26)-(30) reduce 
to the Brinkman model. 

2.1. Compar&on with experimental data 
The original comparison between theory and exper- 

iment was carried out by Beavers and Joseph [1] in 
terms of the flow rate in the channel illustrated in Fig. 
2 relative to the flow rate that would occur if the 
porous media were impermeable. The ratio of flow 
rates can be expressed in terms of the ratio of area 
averaged velocities, and in the q-region the area aver- 
aged, dimensionless velocity is given by 

1 i r = ~ U ~ d Y _ l  2 l = -  - ~a - - iaCl .  (31) 
(u.)  a./~o 

For the case in which the permeability tends to zero. 
Kao , -* 0. we designate the dimensionless average vel- 
ocity in the r/-region by (U.)* and note that equation 
(31) leads to 

(u.)* = ~2.  (32) 

Following Beavers and Joseph [1], the fractional 
increase in the flow is expressed as 

• = (U.)  1 (33) 
(W.)* 

and when equations (29), (31) and (32) are used we 
obtain 

= 3(a + 2/x/(e~'°)) (34) 
a(1 - / ~  + ~&/(~))" 

When fl is equal to zero we recover the Brinkman 
solution which leads to a fractional excess flow given 
by 

- 3(a+2/x/(e~'°)) Brinkman solution. (35) 
,~(I + ~/4(~)) 

This result has exactly the same form as that of Beavers 
and Joseph [1] ; however, in this case there is no adjust- 
able parameter. To be clear about this matter, we list 
the result of Beavers and Joseph as 

3(a+2ct) 
• = - -  Beavers and Joseph. (36) 

a(1 +coo) 

Here the dimensionless parameter a results*from the 
stress condition used by Beavers and Joseph which we 
write in terms of our nomenclature 

dy x/(Ka~ ) ( ( va ) , - ( va ) , o ) ,  y = 0 (37) 

in order to facilitate the comparison with equation 
(11). 

In Figs. 3-5 we compare equation (34) with the 
experimental data of Beavers and Joseph [1] for vari- 
ous values of the dimensionless, adjustable parameter, 
fl, and we list the Brinkman solution given by equation 
(35). Since Beavers and Joseph did not measure the 
porosity of the og-region, we arbitrarily specified the 
porosity to be ea~ = 0.4 in both equations (34) and 
(35). In these figures we see that good agreement 
between theory and experiment can be obtained for 
values offl ranging from - 1.0 to 1.5. This is consistent 
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Fig. 3. Comparison between theory and experiment for 
Foametal (Kp,o = 1.1 x 10 -s in:). 
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Fig. 4. Comparison between theory and experiment for 
Foametal (HI, K~,o =: 15.0x 10 -6 in:; A,  K~,o = 61.0× 10 6 

in:; O, Kp~ = 127x 10 -6 in2). 

imental data. The precise comparison between the two 
approaches is illustrated in Table 1 which is based on 
Table 1 of  Beavers and Joseph [1]. Here one can see 
that the parameter ct is very sensitive to the value of  
the permeability, Ks,o, whereas the parameter fl is 
order one for permeabilities that change by a factor 
of  more than 100. It seems clear that this improvement  
results from the retention of  the Brinkman correction 
term in equation (5). It is also clear that the structure 
of  the porous media, and in particular the structure 
of  the boundary, cannot be described by the single 
length-scale, x/(Ks,o). I f  this were the case, a single 
value of  fl would suffice to describe the experimental 
results, whereas the actual values range from - 1.0 to 
+ 1.47. 

1.4 

1 2  
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0.6 - .47 
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O 

Fig. 5. Comparison between theory and experiment for Alox- 
ite (O, K~ = 1.0 ;< 10 -6 in2; A,  Kp~ = 2.48 x 10 6 in:). 

with the idea that fl is on the order of  one and that 
the sign of  fl may be either positive or  negative as 
suggested by the nature of  excess functions indicated 
in Fig. 5 in Part  1. The comparison presented in Fig. 
3-5 is analogous to that presented by Beavers and 
Joseph [1] in their Figs. 4, 6 and 7 where they used 
equation (36) to obtain similar agreement between 
theory and experiment. The advantage of  our 
approach is simply that it is a more precise rep- 
resentation of  the physics. This is indicated by the fact 
that fl is order one whereas the parameter ~ in equation 
(36) was varied by a factor of  40 in order to obtain 
good agreement between equation (36) and the exper- 

3. VARIABLE POROSITY MODEL FOR THE 

BOUNDARY REGION 

At this point we return to the general form of  the 
volume averaged Stokes' equations (presented in Sec- 
tion 3 of  Part I) which can be expressed as 

0 = - V (pp)S  + Psg + g~ i psV2 (vp) 

--~s~;l(vt#,S)°[V(gfll(Yfl))]--/.2fll~S. (38) 

About  the vector Os we know 

J" K~-~ • (vp)~ in the homogeneous co-region 
Os 

0 in the homogeneous ~/-region 

(39) 

and this suggests that we could describe the momen-  
tum equation in the boundary region by 

0 c't(ps ~>S 1 d2(va~> 

eAy) ay Lay o~, (v~> 

/*~ (v~), - 6 ~ < y ~ < O .  (40) 
Ks(Y)  

Here we have explicitly located the boundary region 
by - ~  ~ y ~< 0 with the thought that this is appro- 
priate for the planar averaging volume shown in Fig. 

Table 1. Experimental and theoretical parameters 

Average pore 
Block Kp,o [in 2] ct (B and J) fl (This work) size [in] 

FoametaD 11 x 10 6 1.2 +0.6 
Foametal A 15 x 10 6 0.78 +0.7 0.016 
Foametal B 61 × 1 0  - 6  1.45 0.0 0.034 
Foametal C 127 × 10 6 4.0 - 1.0 0.045 
Aloxite 1.0 x 10 -6 0.1 + 1.47 0.013 
Aloxite 2.48 × 1 0  - 6  0.1 + 1.47 0.027 

tThese results were obtained with water, as opposed to oil, and no estimate of the average 
pore size was given. 
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2. If the spherical averaging volume were more appro- 
priate, as it would be if magnetic resonance imaging 
were used to measure the volume averaged velocity, it 
would be best to locate the boundary region according 
to --3/2 <~ y <<. +3/2. The numerical solution of equa- 
tion (40) can be coupled with the analytical solutions 
of equations (9) and (12) in order to produce the 
velocity field in both the q- and co-regions, and from 
those results we can obtain the fractional excess flow 
denoted by @ in equation (33). 

In the variable porosity model there will be two 
'adjustments' that can be made within certain limits. 
There is the choice of the functional dependence of 
the porosity in the boundary region, and one must 
decide on the thickness of the boundary region, 3. The 
most reliable source of information concerning the 
latter is the detailed numerical work of Larson and 
Higdon [2, 3] and of Sahraoui and Kaviany [4]. Their 
results suggest that the thickness of the boundary 
region is on the order of the pore or particle diameter 
associated with the porous media, and to see how this 
is related to the permeability that has been used as a 
length-scale parameter for the m-region, we use the 
Blake-Kozeny equation [5] to express the per- 
meability as 

2 3 1 dp~,8o~ 
K ~  - 180 (1-es~)  2" (41) 

In terms of the thickness of the interfacial region, 6, 
we have 

3 - ~ /180(1--e8'°)2],(6~'~ (42) 

For  a porosity of es~ = 0.4 this leads to the estimate 

6 6 
30~pp (43) 

x/(Ks.) 

and on the basis of the work of Larson and Higdon 
[2, 3] and of Sahraoui and Kaviany [4] we express this 
idea as 

6 
- 0(30). (44) 

4(K8o,) 
This ratio is related to the parameter a by 

1 3 
or~ = 0(3 x 10 2). (45) 

c¢ x/(Ks,) 

Equations (43)-(45) are consistent with the results for 
Aloxite presented in Table 1, but are not consistent 
with the results for Foametal. This is to say that the 
experimental results of Beavers and Joseph [1] for 
Foametal are not consistent with the numerical studies 
of Larson and Higdon [2.3] and of Sahraoui and Kav- 
iany [4] and the idea that 6 is on the order of 
4(K8o). 

To be explicit about the solution of the velocity field 
for the variable porosity model we list the boundary 
value problem as 

B.C. 1 (vs) . = 0 ,  y = h  

a(Ps)~ 02@85, 
0 8x 

= + #8 V ' 

O<~y<.h 

B.C. 2 @8), = (vs),  

0= O(PsS+ ~ 
@ ~8(Y) 

no slip condition (46) 

Stokes' equations (47) 

a(vs)~ 0@8) 
ay ay ' 

y = 0 continuity (48) 

a2(v~) 
ay 2 

+ es(Y) ay ~y @8) 

B.C. 3 

0 -  

P8 
K8(Y ) (vS), - 6  <~ y <~ O (49) 

variable porosity model 

a(vD a(vs)~ 
@ 8 )  = (v8)o , ,  a y  - ~y  ' 

y = - 3  continuity (50) 

O(Ps)~) #8 O2(v~)~. - - +  
3x es.o @2 

P8 
K8~o@8)o.. --oo < y  < - 3  (51) 

Darcy's law with the first Brinkman correction 

B.C.4 (vs )~ i sboundedasy  ~ - o o .  (52) 

For  this to be a valid representation, we require that 
the porosity and the permeability, es(Y) and Ka(y) be 
continuous functions and that the porosity have a 
continuous first derivative. To achieve this, the 
porosity is expressed as 

~8 = 1 +3(e8~-  l)(y/3) 2 

+2(~8~-1)(y/3)  3, - 6 ~ < y < 0  (53) 

and the functional dependence of the permeability is 
represented by the Blake-Kozeny equation. 

Ks~ (1 - ea)2e~o (54) 
K8(Y) (1 --~8o~)2~ " 

While this choice for the porosity and the permeability 
is plausible, one must keep in mind that other choices 
could be made; however, once we accept equations 
(53) and (54) we are left with a single adjustable par- 
ameter. This is the thickness of the interfacial region, 
3, and we will express this parameter in dimensionless 
form as. 6/~,/(K8,o ). 

The numerical solution of the problem described by 
equations (46)-(52) makes use of analytical solutions 
for the t/- and co-region equations given by equations 
(47) and (51), each of which contains a single unde- 
termined constant of integration. If  values for these 
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tWO constants are assumed, the velocities at y = 0 and 
y = - 6  are specified and equation (49) can be solved 
numerically. This ]produces values of  the derivatives 
of  the velocity at y = 0 and y = - 6  which are not  
necessarily equal to the values determined by equa- 
tions (47) and (51)  A Newton-Raphson  convergence 
routine is then used to develop solutions of  equations 
(47), (49) and (51) that provide the continuity con- 
ditions listed by equations (48) and (50). Tests showed 
that the computed results were independent of  the 
mesh size when 200 or more points were used in the 
finite difference calculations. 

In order to clearly identify the solution procedure, 
we represent equations (46)-(52) in the manner  illus- 
trated by equation,; (17)-(22) 
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0 
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Fig. 6. Comparison between the variable porosity model and 
experiment for Foametal (Kp~ = 1.1 x 10 -5 in2). 

B.C. 1 U . = O  a t Y = a  

d2U" 1, 0~< Y~<tr 
d y  2 

~u. ~u 
B.C. 2 U , = U , ,  ~ y  0 y ,  Y = 0  

I 

firVst ~ ' - - - -  second ~ a n  correction Brinkman 
correction 

K~,o U 
Ka(y) = -- 1, 

(55) 

(56) 

(57) 

-51~/(Ka,o) <~ Y <~ O (58) 

1.4 

1.2- 

1 . 0 -  

0.8- 

0.6- • • e  
| 

04-  s 

0.2- =~1 • • t • • 

0.0 

0 

Fig. 7. Comparison between the variable porosity model 
and experiment for Foametal ( I ,  Kp~ = 15.0 x 10 .4 in 2 ; A,  

KB~ = 61.0 x 10 -6 in 2 ; O, Kp~ = 127 x 10 .6 in2). 

OU OUo~ 
B.C. 3 U = U ~  Oy d Y '  Y = - f / x / ( K ~ )  

1 d2U, o 

e~,o dY  2 

(59) 

- - - - - U , o  = - 1 ,  - o o ~ <  Y~<0 (60) 

B.C.4 U , o ~ l  at Y ~  - o o .  (61) 

The analytical solutions for the r/- and o-regions are 
given by 

U. = ½ a 2 [ 1 - ( Y / a ) : ] - C , a [ 1 - ( Y / a ) ] ,  0 <<. Y <~ a 

(62) 

U~ = C2 exp (~/(e~,) Y) + 1, - oo ~< Y ~< 0 (63) 

and the two velocity fields are specified in terms of  
assumed values of  Cl and C2. An iterative procedure 
then leads to a numerical solution of  equation (58) 
based on matching; the derivatives at Y = 0 and at 
-6/x/(Ka~ ). This, in turn, provides a solution for the 
velocity field in the r/-region, and one then makes use 
of  equation (33) to .compute the fractional excess flow 
in terms of  the adjustable parameter,  6/x/(Kao~ ). The 
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Fig. 8. Comparison between the variable porosity model 
and experiment for Aloxite (O, Kp~ = 1.0x 10 -6 in2; A, 

K~o, = 2.48 x 10-rin2). 

results are displayed in Figs. 6-8. In Fig. 6 we seepoor 
agreement between the model  and the experimental 
data for the Foameta l -water  system for a value of  6/ 
~/(Ka,o) = 2. A similar situation is illustrated in Fig. 7 
for three Foameta l -o i l  systems, and the use of  even 
smaller values of  the parameter,  6/x/(Ka,o ) leads to 
larger values of  O. Since we expect • to decrease with 
decreasing values of  5/x/(Ka,o ) this behavior does not  
make physical sense and we conclude that our choice 
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of functions for the porosity and the permeability 
given by equations (53) and (54) is unacceptable for 
small values of 6/~/(Kao,). Not only do small values of 
6/x/(Ka~) lead to physically unreasonable results, but 
they are also in conflict with the estimate given by 
equation (44). The failure of our variable porosity 
model is most likely associated with the representation 
for the term ~ which is given exactly by equation 
(36) of Part I. While the limiting forms of that integral 
expression are correctly given by equation (39), the 
simplification represented by equation (54) for the 
local permeability would appear to be unacceptable. 
This is consistent with the conclusion reached by Sah- 
raoui and Kaviany [4] on the basis of a detailed solu- 
tion of the Navier-Stokes equations in the neigh- 
borhood of the boundary between a porous medium 
and a homogeneous fluid. A variable porosity model 
has also been proposed by Hsu and Cheng [6] for 
plane Couette flow past a porous medium; however, 
no comparison with experiment was carried out. 

In Fig. 8 we have compared the variable porosity 
model with the two Aloxite-oil systems studied by 
Beavers and Joseph [1]. The value of 6/x/(K~o~ ) = 13 
for these systems provides 9ood agreement with the 
experimental results and is consistent with the estimate 
given by equation (44). A key difference between the 
Foametal systems and the Aloxite systems is that the 
latter have permeabilities that are an order of mag- 
nitude smaller than the former. 

While the results shown in Fig. 8 are certainly 
attractive, the overall comparison between the vari- 
able porosity model and the experimental data leaves 
much to be desired. The results based on the stress 
jump condition that were presented in Section 2 are 
considerably more attractive, and one must wonder 
why an approach that is based on a more accurate 
description of the fluid mechanics leads to a less 
attractive comparison between theory and exper- 
iment. The reason seems to be associated with the 
complexity of equation (58) which replaces the rela- 
tively simple stress condition given by equation (20). 
The three terms on the left hand side of equation (58) 
change significantly with position and this is illus- 
trated in Fig. 9 where we have presented calculated 
values of the first Brinkman correction, 
g~1632U/t~Y2, the second Brinkman correction, 
ef ~ (t~ea/t3 Y) d(ef' U)/(~ Y, and the Darcy stress, 
(K~,o/K~(y)) U. There we see that the first Brinkman 
correction and the Darcy stress tend to cancel each 
other. This means that the second Brinkman cor- 
rection plays a crucial role in the fluid mechanics of 
the boundary region even though it is smaller than the 
other two viscous terms. The results presented in Fig. 
9 clearly indicate that the second Brinkman correction 
cannot, in general, be neglected as has been done in 
all previous studies. Sahraoui and Kaviany [4] have 
suggested that the permeability may be a very complex 
function of position in the interfacial region, and this 
certainly seems to be an explanation for the failure of 
the variable porosity model illustrated in Figs. 6 and 
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Fig. 9. Variation of Brinkman correction terms in the inter- 
facial region. 

7. One could undoubtedly find a function Ka~/Kp(y) 
that could be used to fit the experimental results of 
Beavers and Joseph; however, there is no reason to 
explore this possibility without more detailed lab- 
oratory experiments and numerical solutions of the 
Stokes' equations in the boundary region. The latter 
could be used to evaluate the function ~p directly and 
this would provide extremely useful information. 

4. CONCLUSIONS 

In this paper we have developed solutions of the 
equations of motion for the flow of a homogeneous 
fluid past a porous medium, subject to a stress jump 
condition imposed at the boundary between these two 
regions. For  the experimental data that are currently 
available, one can obtain good agreement between 
theory and experiment in terms of a single adjustable 
parameter that appears in the stress jump condition. 
This parameter is of order one as predicted by the 
theory ; however, the development of a reliable empiri- 
cal representation for this parameter will require fur- 
ther experimental studies. Attempts to develop a more 
rigorous description of the boundary region provide 
some insight into the nature of the first and second 
Brinkman corrections; however, detailed laboratory 
and numerical experiments are needed before sig- 
nificant improvements on the stress jump condition 
can be made. 
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